【诺奖得主Wilczek科普专栏】空穴如何“来风”?
(温馨提示:文章内含中文版本、英文版本,满足更多读者需求哟!)
声明:本专栏纸质版每月在《环球科学》杂志刊登,网络电子版经作者授权由蔻享学术在微信公众号上进行网络首发。
Frank Wilczek
The particles known as "holes" make the modern world possible and a brilliant future conceivable. Understanding what they are and how to make and use them has been one of the great scientifific achievements of the past century. It highlights the long-term value of fundamental research driven by curiosity.
Imagine suddenly plucking an electron out of an atom of material. Eventually the atom will settle down into a stable state, where the region around the missing electron is marked by a scar-a place where an electron should be but isn’t. A scar of this kind is what we call a hole.
Since they arise from the absence of an electron, which by convention carries a unit of negative charge, holes carry a unit of positive charge (like protons). In some materials, including metals and semiconductors, holes are moveable; indeed, since holes are much lighter than protons, they can move much more nimbly.
Why does this mobility matter? The ultimate source of almost all our energy is radiation flflowing from a giant fusion reactor, our sun. Trees process light from the sun into wood that we can burn; some long-dead plants, broken down by bacteria and put under pressure, turn into petroleum that we can also burn. But these biological processes capture only a small fraction of the solar energy on Earth-and exploiting them brings nasty side-effffects when the burned carbon gets released in greenhouse gases.
A difffferent thing we can do with sunlight is to allow its energy to jostle electrons out of their normal positions. All that’s needed is to expose a suitable material-usually called a photovoltaic-to the sun’s radiance. Its energetic photons can jolt electrons, liberating them and producing holes. If we put a voltage across the material, the electrons and holes will separate, since they hold opposite charges. This makes electrical current flflow. Presto, we've converted sunlight into electrical currents, and solar energy into electrical energy.
Electrical energy is beautiful energy. It's convenient, because we've got excellent ways to store and transport it; it's clean, because no burning is involved. And the fact that the sun rains down about ten thousand times more energy than humans currently consume points to the possibility of a sustainable future with room for growth.
We can also make holes chemically, by mixing in impurities that have fewer chemically active electrons than the atoms they replace. Clever juxtaposition of regions of silicon mixed-or "doped"-with electron-poor boron, rich in holes, and regions doped with phosphorous,
which are rich in electrons, allows us to control flflows of electricity, similar to how dams and trenches allow us to control flflows of water. This strategy is at the heart of solid-state electronics, the core technology of modern communications and information processing.
Holes were fifirst discovered theoretically, in studies far removed from practical considerations. Wolfgang Pauli’s exclusion principle, discovered in 1925 through studies of atomic spectra, showed the possibility of hole-like vacancies in atoms and molecules. In 1930 Paul Dirac, trying to reconcile quantum theory with relativity, was led to introduce the concept of holes-which he called anti-electrons, or positrons-in a hypothetical, ideal cosmic material. The pioneering studies of Rudolf Peierls and others that eventually blossomed into the modern understanding of holes in materials were informed by that intellectual ferment.
Those pioneers didn't have transistors or photovoltaics in mind. The applications came decades later. They were simply curious people, set on understanding the world better. There's a lesson in that.
扩展阅读
编辑:黄琦
蔻享学术平台,国内领先的一站式科学资源共享平台,依托国内外一流科研院所、高等院校和企业的科研力量,聚焦前沿科学,以优化科研创新环境、传播和服务科学、促进学科交叉融合为宗旨,打造优质学术资源的共享数据平台。
版权说明:未经授权严禁任何形式的媒体转载和摘编,并且严禁转载至微信以外的平台!
原创文章首发于蔻享学术,仅代表作者观点,不代表蔻享学术立场。
转载请在『蔻享学术』公众号后台留言。
点击阅读原文~发现惊喜!